Steel Structure Detail

First Post  
upamfva 16 ตุลาคม 2564 , 15:08:32
Steel Structure Detail



Steel Structure detail shows the specification of the portal frame structure, which most common use building structure for Warehouse, Workshop, Garage, and Aircraft Hangar.Get more news about steel structure building,you can vist our website!

The steel structure is a structure mainly made of steel, and it is one of the main types of building structures. The characteristics of steel are high strength, lightweight, excellent overall rigidity, and strong deformability. So it is especially suitable for large-span, super-high and super-heavy buildings. The steel structure is a steel beam, steel column, steel truss, and other components made of section steel and steel plate, and welds, bolts, or rivets connect each component or part.
The lightweight portal frame is a single-story steel building, which beams and columns rigidly connected. It has the advantages of simple structure, lightweight, and all the components manufactured in the factory, easy for assembling on site.
The portal frame steel structure widely used for Industrial, commercial, and agricultural buildings, such as steel warehouse, workshop building, Storage, Poultry building, and aircraft hangar.

The portal frame can divide into single-span (Figure a), double-span (Figure b), multi-span (Figure c) cantilever steel frame (Figure d) ) and steel frame with the adjacent frame (Figure e).
In the multi-span rigid frame, the connection between the column and the roof beam generally hinged, and the multi-span rigid frame single-slope roof (Figure f).
The multi-span rigid frame consisting of multiple double-slope roofs can also be used (Figure g). The beam-column cross-section can be equal or variable, and the base of columns hinged or rigid connected.
Generally speaking, according to the principle that the long side is greater than the width, the amount of steel used in the rigid frame can be reduced, and the support between the columns can be reduced, thereby reducing the amount of metal used in the support system.
Example 1: The size of the building is 60x50m, 60m should use as the length and 50m as the width, that is: 60 (L) x50 (W), not 50 (L) x60 (W).
The most economical column distance under standard load is 7.5-9m. When it exceeds 9m, the steel consumption of roof purlin and wall girt will increase too much, and the overall cost is not economical. The standard load here refers to 0.3KN / m2 for live roof load and 0.5KN / m2 for essential wind pressure. When the loading is more significant, the economic column distance should reduce accordingly. As or workshop building with more than 10 tons crane, the financial column spacing should be 6-7m.

When arranging column spacing, if unequal column spacing is required, try to arrange the end span column spacing to be smaller than the center span. It is because the wind load at the end span is larger than the center span. Besides, when using continuous purlin design, The deflection of the end span and the mid-span bend are always more significant than other spans. Using smaller end spans can make roof purlin design more convenient and economical.